

Creating Better Life

Energy Environment Education

Adding Value to IOT

IOT PLUS

IOTPLUS, Creating Better Life

CONTENTS

p.04 About Us

p.05 History

p.06 Business Area

p.07 Energy Solution

p.18 Education Solution

p.27 Environment Solution

p.34 Product List

p.35 Patent & Certification

IOTPLUS expands technological services in the ICT field and leads product development to add value to IoT.

IOTPLUS Co., Ltd., established in August 2020, aims to expand technological services and develop products for a better life to all humanity and sustainable development.

The company aims to addressing global energy, environment, and education challenges by developing energy ICT and Al-based solution platforms.

With its skilled talent, braod expertise, and strong technological capabilities, the company strives to enhance IoT's value and foster a collaborative, growth-driven corporate culture.

IOTPLUS Co., Ltd.

Values

Strategic Directions

Reducing energy gap using future technologies

Working to reduce educational gap

Contributing to environmental protection

History

2024

- Selected for the [2024 Research-and-Development Innopolis Foster (R&D) Project]
- Selected for the [2024 Regional Autonomous Digital Innovation Project] (Project Duration: 2024 2026)
- Selected for the [5th Gwangju-Jeonnam Innovation Platform Energy New Industry Foster Project]
- Selected for the [Jeonnam Naju Innopolis Research-and-Development (R&D) Foster Project]
- Selected as a participating company for [Consumer Electronic Show 2025 (CES 2025)]
- Selected for the [2024 Startup Commercialization Support (Startup Leap) Project]
- Technology Transfer: Transferred Energy-Harvesting Wireless Temperature-and-Humidity Diagnostic Technology from the Korea Electrotechnology Research Institute (KERI)
- Certification for Innovative Technology-based Small and Medium Enterprises (Inno-Biz)

2023

- Approved for Special Regulatory for Demonstration by the Ministry of Trade, Industry and Energy (MOTIE)
- Selected as a promising company of Jeonnam Naju Innopolis
- Acquired ISO 14001 & ISO 9001 Certifications
- Selected for the [Innopolis Technology Transfer and Commercialization (R&BD) Project]
- Selected as a contractor for the Naju Industrial Complex FEMS (Factory Energy Management System) Construction
- Secured Investment from the Jeonnam Angel Investment Matching Fund
- Acquired [KEPCO Trusted Partner (KTP)] certification from the Korea Electric Power Corporation (KEPCO)
- Technology Transfer: Transferred patented technology from the Korea South-East Power Co., Ltd. (KOEN)

2022

- Patent Transfer: Transferred patent from the Korea Institute of Energy Research
- Executed the [Initial Startup Package Project] by the Ministry of SMEs and Startups (MSS)
- Establishment of Smart Education System using Edutech
- Executed the [Startup Growth Technology Development Project] by the Ministry of SMEs and Startups (MSS)
- Secured Investment from Jeonnam Start Up Technology Holdings (JNTH)
- Opened the EV charging system for the achievement of an Energy Self-Sufficient Rural Village (Location: No-an village, Naju, Jeonnam)
- Secured Investment from Centers for Creative Economy and Innovation, Jeonnam (CCEI)
- Selected as the contractor for Smart Collection Hub System Construction (Dong-gu District Office, Gwangju Metropolitan City)
- Certified as a Research Institute-Linked Company by the Ministry of Science and ICT (MSIT)

2021

- Establishment of an In-House Corporate Research Institute
- Certified as an Excellent Technology Evaluation Company (NICE D&B, T-4)
- Signed an MOU for Business Cooperation with Dongshin University
- Certified as a Venture Business (Innovation Growth Type)
- Executed the [R&D Support Project] for solving local community issues
- Signed an MOU for Advisory Services with the Korea Industry University Research Institute (KIURI)
- Signed an MOU for Investment with the Korea Electric Power Corporation (KEPCO)
- Technology Transfer: Transferred patented technology from the Korea Electric Power Corporation (KEPCO)

2020

IOTPLUS Co., Ltd. founded

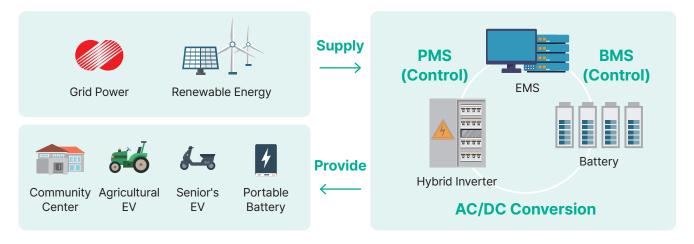
Business Area

Hybrid Inverter ENplus(Hi – 1015)

An all-in-one system integrating renewable energy and grid power with ESS for efficient energy storage and use.

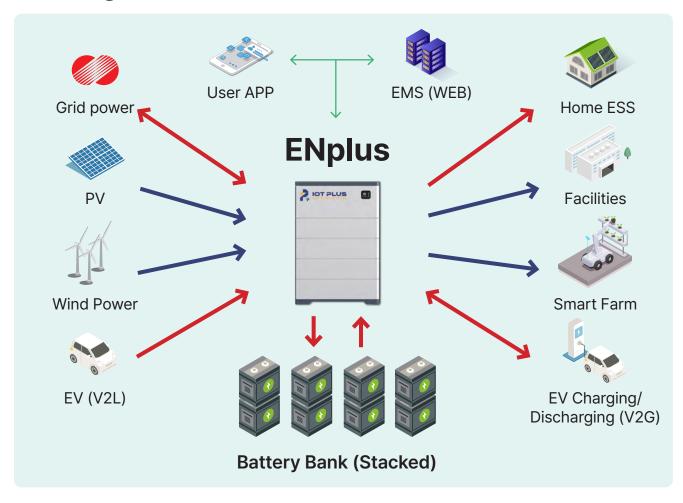
Configuration

- PCS(Power Conversion System)
- ESS(Energy Storage System)
- PMS(Power Management System)
- EMS(Energy Management System)
- V2L(Vehicle to Load)
- Safety Sensor & Safety Switch



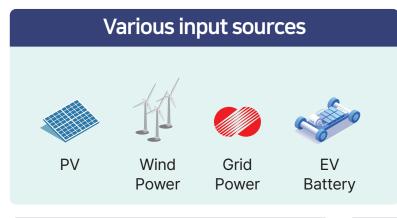
Real-Life Use

Microgrid using the Hybrid Inverter (Hybrid Inverter + ESS + EMS)

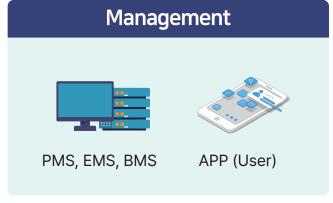


ENplus(HiD – 5050)

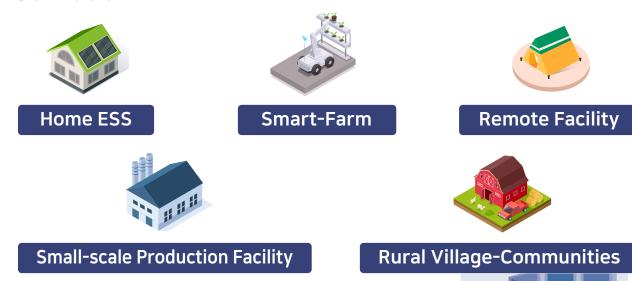
A system that stores renewable energy, grid power, EV, etc in an ESS for Home ESS. It can also be used as standalone portable power.


Configuration


Specifications


	Classification	Hi-1015	HiD - 5050
	Rated (Continuous) Power	5kw	5~50kw
AC Input (Power	Voltage & Frequency	1 ph AC 170-280V -10%/+15%, 50/60Hz ±5%	1 ph AC 170-280V -10%/+15%, 50/60Hz ±5%
Supply / Grid Side)	Max. Input Current	40 Arms	56 Arms
,	Power Factor	>0.99(@ Nominal)	>0.99(@ Nominal)
	Rated (Continuous) Power	5 kW	7 kW
AC Output	Voltage & Frequency	1ph AC 220/230/240V ±5%, 50/60Hz ±0.1%	1ph AC 220/230/240V ±5%, 50/60Hz ±0.1%
(Load Side)	Rated Output Current	21 Arms	29 Arms
	DC-AC Conversion Efficiency	95%	95%
	Energy Capacity	9.2kWh/13.8kWh(10~15kWh)	-
	Cell Type	Lithium-ion	-
Battery	Input Voltage Range	DC 44.96 ~ 55.4V (DC 51.1V nom)	-
	Overcharge Protection	DC 62V	-
	DC-AC Conversion Efficiency	93%	-
	Max. Input Power	5kW	50kW
PV Input	MPPT Voltage Range	DC 120~430V	DC 120~430V
(MPPT)	Maximum / PV Open-ckt Voltage	DC 450V	DC 450V
	Max. Input Current	40 Adc	56 Adc
Wind Power	Max. Input Power	-	50kW
WIII IG FOWEI	Max. Input Current	-	23 Arms
V2G	Max. Input Power	-	5kW
V20	Max. Charging Power	-	7kW
V2L	Max. Input Power	-	3.6kW
	Man-machine Interface	7" full color display panel with touch screen	7" full color display panel with touch screen
	Remote Control Interface	modbus/TCP	modbus/TCP/LTE
Common Chrs	Protective Functions	Overcurrent, Output Short, Overload, Over temperature, Output voltage abnormal	Overcurrent, Output Short, Overload, Over temperature, Output voltage abnormal
		Battery voltage high/low, Battery Disconnection	Battery voltage high/low, Battery Disconnection
		PV overcurrent, PV overvoltage	PV overcurrent, PV overvoltage
Mechanic Chrs	Dimension (W xH xD) / Weight (Approx.)	700x1312x298mm/150kg(10kWh)	500x500x500mm(50 ~ 100kWh)
	Enclosure Protection Rating	IP21 (Indoor Installation)	IP21 (Indoor Installation)
Environment	Operating Ambient Temperatures	-10 ~ +50 dec C	-10 ~ +50 dec C
Compatible	EMC	IEC/KN 61000-6-2, CISPR/KN 11	IEC/KN 61000-6-2, CISPR/KN 11
Standards	Safety	IEC/K 62477-1(2011-12)	IEC/K 62477-1(2011-12)

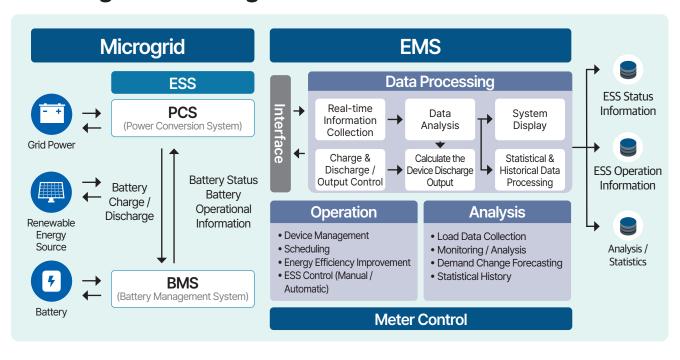
Features



Utilization

Expected Benefits

- Reducing electricity costs through renewable energy
- Contributing to Net Zero
- Efficient power usage with remote control and real-time monitoring


Energy Management System - Integrated

A system that integrates various energy sources to optimize consumption and improve efficiency, monitoring and managing power usage and supply in real-time for more efficient ESS operation.

EMS Screen

Configuration Diagram

Energy Management System - PMS

The Power Management System (PMS) optimizes electricity flow in real-time, ensuring stable supply and improved efficiency by managing power demand changes with the ESS.

loT_Energy Management System v 1.0



EMS Main Screen

PMS Main Screen

PMS Setting

PMS List

Expected Benefits

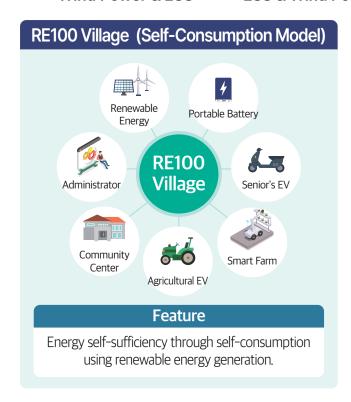
- Real-time monitoring and data collection
- Analyze power and standby consumption
- Control energy use, charging, and discharging
- Centralized management of energy devices for quick response

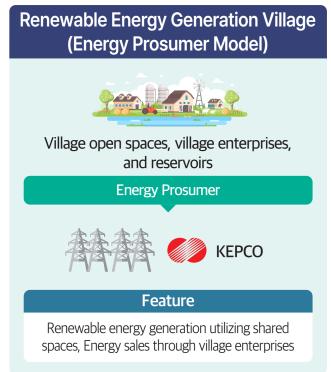
Solution 1: Constructing Energy Self-Sufficiency Village

Dae-sil Village, Bonghwang-myeon, Naju

PV & Wind Power Generator

Wind Power and Gobo Lighting


Wind Power & ESS



ESS & Wind Power Generator

EMS

- Expected Benefits
- Reducing electricity costs for the community
- Providing free electricity to village members
- V2L
 Generating income by selling surplus electricity

Solution 2: Energy Welfare System

Haksan-Dongsan Village, Noh-an-myeon, Naju-si

EV Charging Station

EV Charging Station using PV

Charging Senior's EV

EV Charging Station & ESS

Charging EV

Charging Agricultural EV

System to realize energy welfare in rural areas using renewable energy and ESS

- Expected **Benefits**
- Free charging for rural e-mobility
- Reducing power costs for village public facilities
- Supporting the use of local currency
- Contributing to NET ZERO

System Configuration

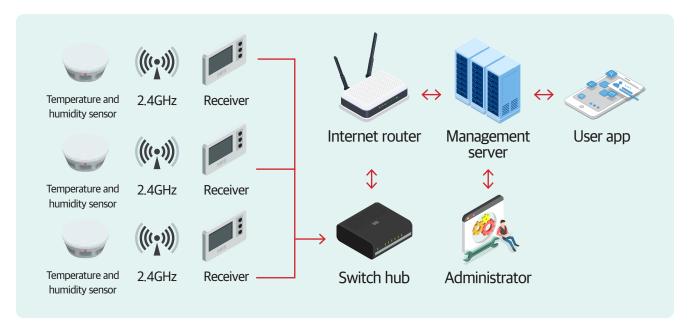
Category	Standard Model (Independent Type)	General Type	Premium Type
PV	5kW	10kW	15kW
ESS	10kWh	20kWh	50kWh
Charger	Senior's EV: 6 / Agricultural EV: 2		
Indoor power	Community Center		
Operating SW	EMS, PMS, PCS, APP		

Wireless Temperature and Humidity Sensor with Energy Harvesting

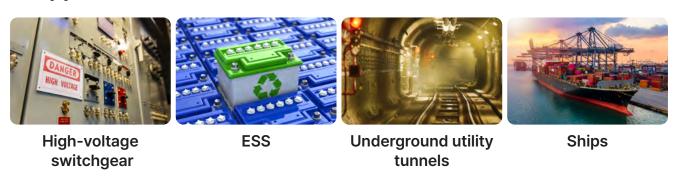
A technology that harvests energy from the environment to measure and transmit temperature and humidity without external power, batteries, or cables.

Harvesting Specification

► Temperature and Humidity Sensor


Category	Feature
Power Suply	Energy harvesting (minimum operating current of 1.0A or highwer)
Installation Location	Incoming cable
Material	Flame-retardant insulator
Magnetic Flux Concentrator	Ferromagnetic band
Conductor Temperature Measurement	Range: -10°C to 120°C (±1.0°C)
Ambient Humidity Measurement	-40°C to 125°C, 0% to 100% RH (accuracy: ≤1.8% RH)
Communication Frequency	2.4 GHz ISM band
Data Transmission Range	10m ~ 15m
Transmission interval	Within 4 seconds

► Temperature and Humidity Receiver Specifications


Category	Feature
Power Supply	DC 12V/1.5A
HMI connection	Rs-485(MODBUS-RTU)
Material	ABS plastic
Communication Frequency	2.4 GHz ISM band
Installation Location	Bolted on the back of the panel front monitor
Communication Frequency	2.4 GHz ISM band
Data Transmission Range	10m ~ 15m
Maximum number of sensors receivable	Up to 16 sensors

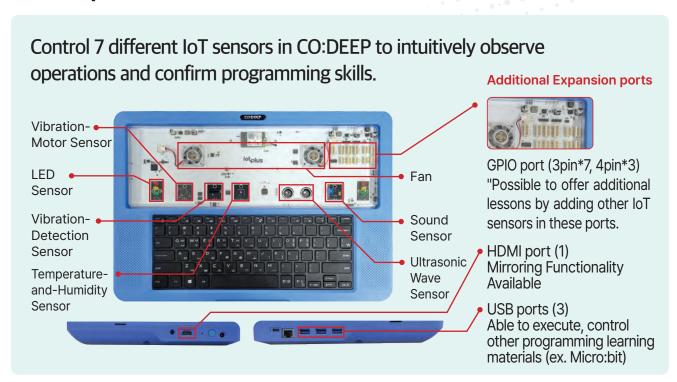
Advantages

- Simultaneous monitoring of temperature and humidity
- Semi-permanent use without additional power supply
- System implementation without additional installation on existing power facilities
- Wireless communication ensures insulation with cable-free installation
- Prevents electric shock accidents by monitoring temperature and humidity without opening doors
- Easy installation and reinstallation with detachable setup

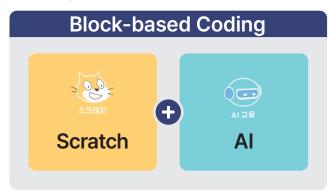
Applications

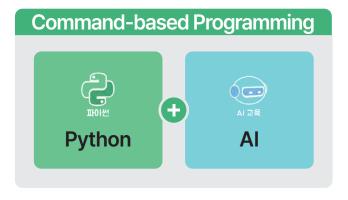
Expected Benefits

- Reliable temperature and humidity measurement with contact-based semiconductor technology
- Contributes to planning for maintenance and repair of power facilities using digital temperature and humidity data
- Prevents electric shock accidents by enabling monitoring without door opening
- Provides customized technology backed by proprietary expertise



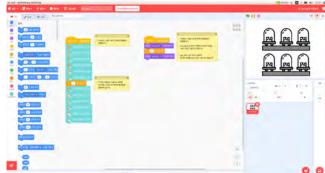
CO:DEEP


CO:DEEP, a practical AI·SW programming learning tool, is an all-in-one system which users can experience programming, or write statements on their own.



Composition

Key Point



From basic to advance, selectable programming by level

Basic (Scratch)

Learn the basic knowledge(Basic Concepts, Operational Mechanisms, Hands-on Experience, etc) of programming through CO:DEEP, and advance to the next level.

Advance (Python)

Through detailed comments about the statements, learn about command-based coding and acquire real-life programming skills through CO:DEEP.

ΑI

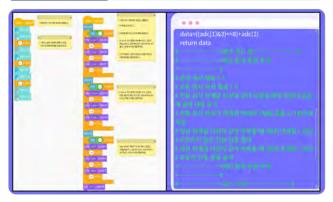
Learn about Artificial Intelligence, from basic concepts to experience, through seven titles

CO:DEEP Steps

STEP. 01 Video Lecture


Video lecture inside CO:DEEP enables students to follow each steps and learn programming.

STEP. 02 Run Various Exercises


Learn the basic concepts of programming through given exercises in every section.

STEP. 03 Check the Source Code

Visually observable source codes, leading to easily understandable programming principles.

STEP. 04 Detailed Comments

Detailed comments on every statement enable easy learning of programming principles.

STEP. 05 Practice Programming

Experience programming by writing statements on your own.

STEP. 06 Check Results

Check if your statements are in order by observing whether the sensors operate properly based on your input.

♠ Curriculum

Level	Lesson	Topic	
Education SW	LESSON 1	Learning the Background of Programming and the Terms of Scratch	Learning the Background of Programming and the Terms of Python
	LESSON 2	Learning the Basic Syntax of Scratch	Learning the Basic Syntax of Python
	LESSON 3	Practical Exercise using Scratch Basic Syntax	Practical Exercise using Python Basic Syntax
Basic	LESSON 4	Controlling the	LED Module
	LESSON 5	Controlling the Fan Module	
	LESSON 6	Controlling the Vibration-Motor Sensor	
	LESSON 7	Controlling the Sound Sensor	
	LESSON 8	Controlling the Vibration-Detection Sensor	
	LESSON 9	Controlling the Ultrasonic Wave Sensor	
	LESSON 10	Controlling the Temperature-and-Humidity Sensor	
	LESSON 11	Cross-Operating the LED Module	
	LESSON 12	Cross-Operating the Fan Module	
	LESSON 13	Controlling the LED Module using the Sound Sensor	
	LESSON 14	Controlling the Fan Module using the Sound Sensor	
	LESSON 15	Controlling the LED Module using the Temperature-and-Humidity Sensor	
Intermediate	LESSON 16	Controlling the Fan Module using the Temperature-and-Humidity Sensor	
intermediate	LESSON 17	Controlling the LED Module using the Ultrasonic Wave Sensor	
	LESSON 18	Controlling the Fan Module using the Ultrasonic Wave Sensor	
	LESSON 19	Controlling the Speaker using the Ultrasonic Wave Sensor	
	LESSON 20	Controlling the Vibration-Motor Sensor using the Ultrasonic Wave Sensor	
	LESSON 21	Controlling the Fan Module using the Vibration-Detection Sensor	
	LESSON 22	Controlling the LED Module using the Vibration-Detection Sensor	
	LESSON 23	Constructing High-Temperature-Warning System using the Temperature-and-Humidity Sensor	
	LESSON 24	Constructing High-Temperature-Ventilation System	m using the Temperature-and-Humidity Sensor
Advance	LESSON 25	Constructing Earthquake-Detection System	
	LESSON 26	Constructing Break-in-Detection System	
	LESSON 27	Constructing Auto Fan using Ultrasonic Wave Sensor	
	LESSON 28	Learning the Bac	ckground of Al
	LESSON 29	Al Image Recognition	
	LESSON 30	Al Face Rec	cognition
Al	LESSON 31	Al Alphabet Recognition	
	LESSON 32	Al Voice Recognition	
	LESSON 33	Al Video Effect	
	LESSON 34	Al Object Re	ecognition

Advantages

Possible to teach and learn without prior research

- Possible to teach programming without prior research using the provided teachers' guide.
- Provide different level textbooks for learners and offer 68 video lectures to enable self-directed learning.

All-in-One Tool for Programming

 Possible to learn Scratch (Block-Based Coding), Python (Command-Based Programming), and AI in one device.

From Experiential Learning to Real-Life Skills

• Learners can write sentences on their own, and visually confirm whether the sentences they wrote controls the operation.

Expected Benefits

- Possible to establish concepts about programming
- Possible to nurture ICT professionals.
- Possible to nurture developers in Al, Big Data programs, and more.
- Possible to nurture future generation's creativity and computational thinking.
- Possible to reduce technology gap between countries.

Textbooks & CO:DEEP Charger

Student's Textbook

- Providing examples about real-life usable skills
- · Curriculums based on the learner's current skill level
- Possible to proceed with learning after selecting either the basic or advanced class.

CO:DEEP Charger

- Easy storage & Easy charging
- Prevents product damage
- Ease of maintenance

Teacher's Guidebook

- More detailed explanations available
- Able to teach without prior research
- Conduct step-by-step classes following the provided guidelines

Students'

Teachers'

CO:DEEP Charger

● Expert-and-Educator-Endorsed Outstanding Product

Empirical Institution: Chungnam

Provincial Office of Education 🧷 충청남도교육청

Empirical Evaluation Team: 10 elementary, middle, and high school teachers

Empirical Evaluation Results: 4.99 out of 5

EDU+Week Future Education Fair: Innovation Coding **Tool Award**

Solution

Kumsung Elementary School (Damyang)

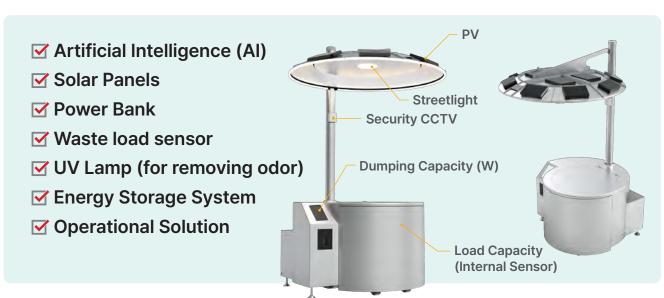
Damyang Girls' Middle School

Gwangju Education University

Product Information

Model	CO:DEEP
Product Dimension	387(W) x 283(D) x 55(H) (mm)
Sensor Types	LED, Fan, Vibration- Motor, Vibration-Detection, Temperature-and-Humidity, Ultrasonic Wave, Sound
Composition	Jetson Nano, Micro SD Card 64GB 7 Sensors, Board PCB, etc
Monitor Specification	15-inch LCD 1920 × 1080(FHD)
Power Input	15V 4A
Connectable Interfaces	USB x3, HDMI x1, Stereo jack
Expansion Ports	3pin * 7, 4pin * 3
Lesson	Scratch (27) + AI (7) Python (27) + AI (7)

Model	CO:DEEP Charger
Product Dimension	612(W) x 617(D) x 1107(H) (mm)
Internal Capacity	24 Max
Power Consumption	220V
Features	Tempered glass, Air-cooled cooler
lmage	



Eco-friendly Smart Collection Box

A system that uses AI to recognize and collect only certified standard waste bags

Composition

Feature

Al Technology

- · Pay-as-you-go trash bag recognition system using Al
- Recognizes pay-as-you-go trash bags and determines whether to collect or not
- Collects only certified trash bags (Prevents illegal dumping)
- If unrecognized with AI, verifies through QR Code

Features of Smart-Pole (S-Pole)

- CCTV for security (Monitors illegal dumping)
- Gobo light (For floor messages)
- Security lighting (Maintains public safety)
- Security bell (For public safety)
- Solar panels (For power supply, energy saving)

Environmental Problem Solutions

- Contributes to energy saving and carbon neutrality using PV
- Prevents illegal dumping through AI, and S-Pole
- Reduces odor with automatically sealing collection box
- Improves urban aesthetics with environmentally friendly design

Convenience & Efficiency

- Hygienic collection with automatic opening and closing
- Provides an internal odor removal system (UV sterilization)
- Accumulation of input quantity management (For rewards)
- Provides information about collection box's location
- Notificate proper operation of the collection box
- Real-time monitoring of load capacity and collection request

Application

Administrator System

Manage Removal of Trash (WEB)

Manage Collection Box, Statistics, Manage Collection Vehicle

Resident / Administrator

Usage and Management Service

Collection box capacity
Fault status
Nearby collection box location

Collection Vehicles

Collection system

Trash bin location information Trash load information

Administrative Data Utilization

Utilization of Administrative Policy data

Utilize waste collection policy Establish waste disposal prediction system

Manage Waste Load & Collection Vehicle

Automatic

opening /
closing

Collection Vehicle

Collection Box

Organization

Recognize trash bags

Al recognizes the trash-bags

2 Recognize QR Code

When error occurs, Al reads the trash-bag's QR code

3 Put inside

Put the trash bag inside the collection box

4 Collection box close

Collection box automatically closes after the put in of trash bag

5 Alarm

Alarm rings when the collection box is full

6 Error

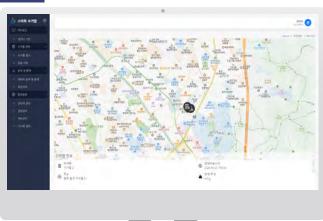
Alarm rings when the collection box has an error

AI: Using as a detection system

Recognize standard bag

Control collection box's opening & closing mechanism

Integrated with collection vehicle + beacons


Provide various input methods (AI, QR)

Expected Effects

- Rapid collecting through real-time monitoring (Warning message when exceeding certain capacity)
- Encouraging dispersed input by providing collection box location and operational status guidance
- Possible to enforce reward policy through input quantity management
- Utilize recycling statistics through constructing pay-as-you-go DB system
- Empowering local residents to solve waste issues on their own

Integrated Control System

A system that monitors and manages data collected from multiple individual systems in real-time on a single platform.

Real-Time Management of Location-Based Products

Management of collection box operation status

Management of collection box information

Notification history management

Data analysis and statistics Input history management

Expected Effects

- Real-time data monitoring allows for quick response in emergency situations and anomalies.
- No additional devices or personnel are required.
- Enables precise data understanding and supports long-term operation.
- Effectively responds to risks such as unauthorized use, theft, and accidents.

Example

Dong-gu, Gwangju Metropolitan City

The AI-based waste collection bin recognizes volume-based waste bags, opening the lid automatically. This helps gather bags from various locations into one place and reduces odors with a UV light. It also tracks individual waste amounts and can serve as a security light or CCTV.

Specification

Eco-Friendly Smart Collection Bin (Premium)

Model Name

Smart Collection Bin

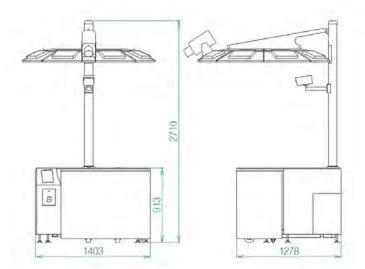
Dimensions

1403 × 1278 × 2710 (mm)

Size

Weight: 500 (kg) / Volume: 560 (L)

Power Consumption


Day: 0.25 (Kw) / Night: 0.46 (Kw)

Power Generation

Solar: 0.08 (Kw)

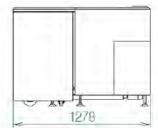
Functions

- Al recognition and QR code recognition
- 10.1-inch touch panel
- Automatic opening and closing of the input slot
- Dual automatic opening and closing of the waste collection compartmen
- Indirect lighting, security lights, and high-beam lights activated at night
- Finger pinch prevention sensors on the input slot and collection compartment

Eco-Friendly Smart Collection Bin (Standard)

Model Name

Al Smart GPB 1000 (Standard)


Dimensions

1403 × 1278 × 2710 (mm)

Size

Weight: 500 (kg) Volume: 560 (L)

1403

Functions

- Al recognition and QR code recognition
- 10.1-inch touch panel
- Automatic opening and closing of the input slot
- Dual automatic opening and closing of the waste collection compartment
- Finger pinch prevention sensors on the input slot and collection compartment

Product List

ENplus(Hi-1015)

An all-in-one system integrating renewable energy and grid power with ESS for efficient energy storage and use.

ENplus(HiD - 5050)

A system that stores renewable energy, grid power, EV, etc in an ESS for Home ESS. It can also be used as standalone portable power.

Energy Harvesting

A technology that harvests energy from the environment to measure and transmit temperature and humidity without external power, batteries, or cables.

Energy-Welfare System

A system that integrates various energy sources to optimize consumption and improve efficiency, monitoring and managing power usage and supply in real-time for more efficient ESS operation.

CO:DEEP

CO:DEEP, a practical Al-SW programming learning tool, is an all-in-one system which users can experience programming, or write statements on their own.

CO:DEEP Charger

Easy storage & Easy charging Prevents product damage Ease of maintenance

Eco-friendly Smart Collection Box

A system that uses AI to recognize and collect only certified standard waste bags

Patent & Certification

Patent

Copyright

Certification

한국경동인증원

한국경충인증원

Company: F- 403, 13 Gyoyuk-gil, Naju-si, Jeollanam-do, Republic of Korea **Laboratory**: F-301, F-402, 13, Gyoyuk-gil, Naju-si, Jeollanam-do, Republic of Korea

P. +82-10-3558-4270 T. +82-61-337-9080 F. +82-61-337-4270 E. iotpluskorea@gmail.com

www.iotpluskorea.com